
Saving Memory on the Sinclair ZX81

Sean A. Irvine
Hamilton, New Zealand

sairvin@gmail.com

In 1981, Sinclair Research released the ZX81 microcomputer, or Timex 1000 as it was
known in the United States. The ZX81 was based around the 8-bit Z80 microprocessor
running at 3.25 MHz with an 8 K read-only memory containing the operating system and a
BASIC language interpreter. In the smallest configuration the ZX81 had just 1 K of RAM.
An extra RAM pack this could be increase this to 16 K, and some third-party packs sup-
ported larger memory sizes. Whatever RAM was available, needed to be shared between
the display, any program the user may have loaded or typed in, and any state associated
with the current execution. Despite the low amount of memory some remarkable feats were
achieved, including an implementation of chess that ran on the 1 K version [17, 18, 19, 20].

In 1982, Sinclair Research released the ZX Spectrum which had 48 K in the most com-
mon configuration. The focus here is on the ZX81, but the techniques discussed are ap-
plicable to the ZX Spectrum; although with 48 K its memory problems were less acute.
The ZX Spectrum had the first ever official implementation of the Scrabble R© board game,
supporting a vocabulary of over 11 000 words in 48 K [30], comparable to the Unix spell
command of that era [29].

We concentrate on the representation of numbers in BASIC, but in practice tricks for
representing numbers were combined with other memory saving strategies. Many of these
techniques first appeared in the popular magazines associated with personal computing and
read like the antithesis of modern programming: avoid comments, use the shortest variable
names possible, reuse variable names, use self-modifying code. Nor were these techniques
theoretical, an abundance of program listings demonstrated them in real programs.

The ZX81 user manual [36] contains a section covering symptoms that a user might
experience when memory is running out; but it does not give much in the way of con-
crete advice for reducing memory usage. A slew of third-party books quickly appeared
for the ZX81 covering all aspects of the machine ranging from introductory BASIC pro-
gramming through to electronic details of the hardware. Several contained sections on
reducing memory usage [4, 14, 27, 22]. In addition many articles, letters, program list-
ings, and other snippets dealing with memory appeared in a variety of magazines, some
of which such as Sinclair Programs, Sinclair User, Sync, and ZX Computing were dedi-
cated to the Sinclair computers. These early magazines catered better for the programmer
than later magazines such as Crash and Your Spectrum (later Your Sinclair) which were
more game focussed and dealt primarily with the ZX Spectrum. Many of these maga-
zines can be found at the Internet Archive and the World of Spectrum websites. Arti-
cles dealing specifically with saving memory varied widely in accuracy and scope, but
include [15, 13, 34, 7, 35, 3, 9, 38, 6, 8, 32].

Consider the BASIC statement 10 LET A=1. On the ZX81 this line occupied 15 bytes:
2 bytes for the line number, 2 bytes for the line length, 1 byte for the token LET, 1 byte
for the variable name A, 1 byte for the symbol =, 7 bytes for the number 1, and 1 byte
for a trailing newline. It is immediately obvious that storing the number 1 is occupying a
disproportionate amount of space. All the tokens of the language (LET, IF, FOR, GOTO,
etc.) were stored efficiently as single byte elements of the ZX81 ‘character set’. Line
numbers were encoded as a 2-byte big-endian form (allowable line numbers ranged from

1

1 to 9999, but other values, like 0, could be used if memory was directly modified). All
other numbers appearing in numeric contexts in a BASIC program listing were stored as
typed, followed by a hidden byte value (126) indicating the presence of a number, followed
by a hidden 5-byte floating-point encoded value for the number. This allowed for faster
execution, but means that writing a number n in a program actually uses d(n) + 6 bytes
of memory, where d(n) is the decimal string length of n. For example, 23 consumes 8
bytes while 3.14 consumes 10 bytes. Using this much memory to store a number was a
significant burden on the 1 K ZX81.

Because both the visible and hidden representations of a number are set when a line
is entered, it is possible to modify memory after the fact, to cause a different number to
be evaluated than that visible in the program. For example, a program might contain the
statement GOTO 10, but in fact jump to some other line number when actually executed.
Another oddity is that an isolated period (.) is a valid representation for 0 on the ZX81.
Therefore, it was possible to go through a program after it was written and compress out
all but one of the visible digits in a number (and the last remaining digit could be replaced
with . if desired).

The fact that each keyword in the BASIC language was a single byte in the ZX81
character set means that it is often possible to save space by using them in arbitrary strings.
Further since using a keyword usually prints surrounding spaces, the saving can be even
greater. McDaniel [28] gives some examples of this, including

100 PRINT " TO STOP PROGRAM, INPUT S"

where we have underlined the use of keyword tokens and free spaces provided by the
keywords. By using the tokens TO, STOP, and INPUT a total of 12 bytes has been saved. A
certain amount of creativity is needed to type some of these constructions because typing
keywords typically requires the ‘K’ cursor. Other articles with this technique include [14,
35, 9].

Two general approaches to saving memory were based on the CODE and VAL functions.
The CODE function returns the numeric value of a character (or more precisely, of the

first character in a string) [36, 14, 27, 13, 22]. For example, CODE "*" returns 23 on the
ZX81. Because keywords like CODE occupy a single byte, this construction requires only 4
bytes (the space between CODE and " is implicit). This is a saving of 42.9% for one digit
numbers, 50% for 2-digit numbers, and 55.6% for 3-digits numbers.

The CODE technique is limited to the character set so at best can produce integers in the
range 0 to 255 inclusive. Some values of the character set cannot be typed on the keyboard
but still can be used provided the relevant memory byte is directly modified (e.g. using
POKE). Even so, there remain some problematic values: 11 (double quote), 118 (newline),
and 127 (cursor) fail, and 126 (number) is marginal. Of these, 118 results in nonsense in
BASIC, 11 and 127 evaluate to 0. While, 126 (number) can be POKEd in a running program
and can work, it will typically result in an integer out of range error when the line is parsed.

A second mechanism applicable to all numbers including decimals uses the VAL func-
tion [36, 27, 22, 9]. The VAL function evaluates its string argument as a numeric expression.
For example, VAL "23" (5 bytes) evaluates to 23. Writing VAL "n" therefore saves 3 bytes
compared to the standard representation of n. However, as VAL can take any valid expres-
sion the savings can sometimes be larger: VAL "1/8" (6 bytes), VAL ".125" (7 bytes),
.125 (10 bytes), 1/8 (13 bytes). Similarly, VAL "1E4" (6 bytes) as a replacement for
10000 (11 bytes). The VAL function is capable of general expression evaluation and its
argument may refer to variables. Suppose there is a need to generate random dice rolls in
a program, then define the expression LET A$="1+INT (RND*6)" and thereafter generate
random dice rolls with VAL A$ [23].

Sinclair BASIC represents π with the PI keyword and thus a single byte. Actually,
the ROM stores π/2, so using this constant does entail some additional computation [26].
The PI constant became the basis for an eclectic collection of representations for small
integers. A selection of these constructions appears in Figure 1 along with timing. Values

2

for which the CODE technique is the best have been omitted. Most of the functions are
self-explanatory, but Figure 2 is a brief summary. In Figure 1, PEEK is only use to look
into the ROM. Parentheses around arguments to functions were not required in Sinclair
BASIC. Negative values can be obtained by adding one additional byte (-) at the front of
the corresponding positive value. Where there are better ways of getting negative values
these are indicated in the table. Sometimes a floating-point value can be used a proxy for an
integer; GOTO PI will jump to line 3, thus in this case a single byte successfully represents
3.

There was no hidden memory cost in referring to existing variables, so if two or more
variables need to be initialized to the same value, it makes sense to initialize subsequent
occurrences from the first one: 10 LET A=1, 20 LET B=A, etc., and similiarly you could
get a 2, using A+A (3 bytes, 157 FRAMES).

n b time expression
– – 100 REM

-5 8 132 -5

-5 4 4136 INT TAN SQR PI

-5 5 154 -CODE "�"

-5 5 238 -VAL "5"

-5 5 242 VAL "-5"

-4 3 227 INT -PI

-1 2 1013 COS PI [35, 9, 8]
0 7 123 0

0 2 150 NOT PI [15, 24, 27, 25]
0 2 385 INT RND

0 2 952 SIN PI [16, 31, 1, 39]
0 2 1831 TAN PI

0 3 143 CODE "" [11]
0 3 143 LEN ""

0 3 199 PI-PI [4, 12, 33, 21]
1 2 151 SGN PI [15, 24, 25]
1 3 171 PI OR PI

1 3 203 PI=PI

1 3 215 PI/PI [4, 27, 12, 33]
2 4 146 CODE "�"

2 4 1008 INT EXP SGN PI [5]
3 2 163 INT PI [31, 10, 5]
4 4 236 -INT -PI

4 4 237 ABS INT -PI

4 4 3214 INT SQR EXP PI [31, 5]
5 4 1516 INT LN PEEK PI

5 4 3177 INT EXP SQR PI

9 3 2379 LEN STR$ PI [9]
9 5 243 INT PI*INT PI

n b time expression
9 6 226 INT (PI*PI) [37]

11 8 124 11

11 5 169 PEEK CODE "X"

11 5 308 VAL "11"

15 4 2380 INT SQR PEEK PI

20 4 1021 INT EXP INT PI

22 4 2397 CODE STR$ -PI

22 4 2405 PEEK LEN STR$ PI

23 3 975 INT EXP PI [31, 10]
27 5 2388 INT PI**INT PI

28 4 226 CODE STR$ NOT PI

29 4 2389 CODE STR$ SGN PI

30 4 2898 CODE STR$ PEEK PI

31 3 2379 CODE STR$ PI [9]
54 4 213 PEEK PEEK PEEK PI

118 9 125 118

118 5 168 PEEK CODE "."

118 6 387 VAL "118"

122 5 4019 INT EXP SQR EXP PI

126 5 170 PEEK CODE "."

127 5 3239 PEEK INT SQR EXP PI

135 3 189 PEEK PEEK PI [31, 9]
195 4 3216 PEEK SQR EXP PI

203 4 3179 PEEK EXP SQR PI

209 4 197 PEEK PEEK NOT PI

211 3 173 PEEK NOT PI [9]
211 3 975 PEEK SIN PI [31]
253 3 176 PEEK SGN PI [9]
255 2 165 PEEK PI [31, 9]

Figure 1: Memory saving representations, n is the number, b is the number of bytes needed
for the expression.

The timing numbers in the table were computed with the sz81 emulator [2] using the
BASIC program in Figure 3. In each case line 40 was replaced with a statement of the form
40 LET A=expression. The actual timing is measured via the FRAMES system variable [36].
These timings prove remarkably consistent with multiple runs of each expression invariably
producing exactly the same timing. The design of sz81 ensures the timings are an accurate
reflection of the timing on a real ZX81.

It is hard to pinpoint when any of these constructions were first noticed, but up to four
citations of early occurrences have been given. Likely many of the tricks were discovered

3

Keyword Meaning
CODE ZX81 character code of first byte of string (or 0 for empty string).
INT Floor function.
LEN Length of a string.
NOT Logical not, any nonzero argument gives 0.
PEEK Content of memory at the given address.
PI π = 3.14159
RND Pseudorandom number r in the range 0 ≤ r < 1.
SQR Square root.
STR$ String representation of its numeric argument.
VAL Evaluate string argument as an expression.
** Powers, 2**3 = 23 = 8.

Figure 2: Brief guide to some ZX BASIC functions.

5 CLEAR

10 POKE 16437,255

20 POKE 16436,255

30 FOR N=0 TO 99

40 REM

50 NEXT N

60 PRINT 65536-PEEK 16436-256*PEEK 16437

Figure 3: BASIC program to time number constructions.

multiple times and passed by word of mouth at various user groups. Indeed, we determined
many of the entries in Figure 1 before finding references to them in the literature. Even after
better or faster representations appeared other forms continued to be used. For instance,
the forms PI-PI and PI/PI remained popular long after the NOT PI and SGN PI forms
first appeared.

References
[1] ? Math maze. Sinclair User, page 30, October 1982.

[2] sz81. http://sz81.sourceforge.net/, 2016.

[3] David Anderson and Ian Morrison. Easy ways of getting quart into a pint pot. Sinclair User,
pages 50–51, February 1983.

[4] Beam Software. The Complete Sinclair ZX81 Basic Course. Melbourne House, Leighton
Buzzard, Bedfordshire, 1981.

[5] Olly Betts. The art of writing small programs. Open Source Developers’ Conference, November
2011. https://survex.com/∼olly/talks/small-programs/small-programs/.

[6] Dave Cartwright. Save memory. Sinclair Programs, page 7, December 1983.

[7] John Coffey. Memory saving tips. Sync, 2(5):6, September/October 1982.

[8] M. J. Davies. 3 into 1K goes. Sinclair Programs, pages 19–20, October 1984.

[9] James Grosjean. Memory scrunching on the TS1000 and ZX81. Sync, 3(5):80–84, Septem-
ber/October 1983.

[10] Tim Grubb. Escape. Sinclair User, page 67, March 1983.

[11] Said Hasson. Alley driver. ZX Computing, page 72, August/September 1982.

[12] D. E. Healey. Enterprise rescue. Your Computer, page 71, March 1982.

4

[13] Andrew Hewson. Making the best use of memory. Sinclair User, pages 57–58, June 1982.

[14] Andrew D. Hewson. Hints & Tips for the ZX81. Hewson Consultants, June 1981.

[15] Kevin Hill. Memory thrift. Your Computer, page 11, November 1981.

[16] D. G. Hockey. Dragon crunch. Sinclair Programs, page 9, July/August 1982.

[17] David Horne. 1K ZX chess. Sinclair, 1982.

[18] David Horne. Chess 1K. Your Computer, pages 68–69, December 1982.

[19] David Horne. Chess 1K. Your Computer, page 81 and 83, January 1983.

[20] David Horne. Chess in 1K. Your Computer, pages 100–102, February 1983.

[21] I. S. Howson. Minefield. Sinclair User, page 31, May 1982.

[22] M. James and M. Gee S. The Art of Programming the 1K ZX81. Bernard Babani, London, July
1982.

[23] Dilwyn Jones. Hints ’n’ tips to improve your programs. ZX Computing, pages 100–102, Au-
gust/September 1982.

[24] Ian Logan. Understanding floating-point arithmetic: Part 1. Sync, 2(1):30–32, January/February
1982.

[25] Ian Logan. Understanding floating-point arithmetic: Part 2. Sync, 2(2):18–22, March/April
1982.

[26] Ian Logan and Frank O’Hara. The Complete Timex TS1000 & Sinclair ZX81 ROM Disassembly.
Melbourne House, 1982.

[27] Mike Lord. The Explorers Guide to the ZX81. Timedata Ltd., Basildon, Essex, February 1982.

[28] Richard W. McDaniel. Using key and token expressions. Sync, 1(5):29, September/October
1981.

[29] M. Douglas McIlroy. Development of a spelling list. IEEE Trans. on Communications, 1(1):91–
99, 1982.

[30] Psion Software. Computer scrabble. Sinclair Research, 1983.

[31] Philip Pulsford. Small enterprise. Your Computer, page 83, October 1982.

[32] Tony Rickwood. Program to achieve speed and efficiency. Sinclair Programs, pages 34–35,
November 1984.

[33] Tim Rogers. Star swerver. Sinclair User, page 32, April 1982.

[34] D. J. Todorovic. Getting a quart into a pint pot. Sinclair User, pages 24–25, August 1982.

[35] Roger Valentine. What can i do with 1K. ZX Computing, pages 91–92, February/March 1983.

[36] Steven Vickers. Sinclair ZX81 BASIC Programming. Sinclair Research Limited, 2nd edition,
1981.

[37] D. Watts. Tank attack. Sinclair Programs, page 33, March/April 1983.

[38] P. Williamson. Save memory. Sinclair Programs, page 7, November 1983.

[39] R. J. Zealley. Towers of Hanoi. Sinclair Programs, page 24, March/April 1983.

5

